INTEGRATED CIRCUITS # DATA SHEET For a complete data sheet, please also download: - The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC - The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC ## HEF4520B MSI Dual binary counter Product specification File under Integrated Circuits, IC04 January 1995 ## **Dual binary counter** HEF4520B MSI #### **DESCRIPTION** The HEF4520B is a dual 4-bit internally synchronous binary counter. The counter has an active HIGH clock input (CP $_0$) and an active LOW clock input ($\overline{\text{CP}}_1$), buffered outputs from all four bit positions (O $_0$ to O $_3$) and an active HIGH overriding asynchronous master reset input (MR). The counter advances on either the LOW to HIGH transition of the CP $_0$ input if $\overline{\text{CP}}_1$ is HIGH or the HIGH to LOW transition of the \overline{CP}_1 input if CP_0 is low. Either CP_0 or \overline{CP}_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on MR resets the counter (O_0 to O_3 = LOW) independent of CP_0 , \overline{CP}_1 . Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times. HEF4520BP(N): 16-lead DIL; plastic (SOT38-1) HEF4520BD(F): 16-lead DIL; ceramic (cerdip) (SOT74) HEF4520BT(D): 16-lead SO; plastic (SOT109-1) (SOT109-1) (): Package Designator North America #### **PINNING** CP_{0A} , CP_{0B} clock inputs (L to H triggered) \overline{CP}_{1A} , \overline{CP}_{1B} clock inputs (H to L triggered) MR_A, MR_B master reset inputs O_{0A} to O_{3A} outputs O_{0B} to O_{3B} outputs #### FAMILY DATA, IDD LIMITS category MSI See Family Specifications ω #### **FUNCTION TABLE** | CP ₀ | CP ₁ | MR | MODE | |-----------------|-----------------|----|----------------------| | _ | Н | L | counter advances | | L | \ \ | L | counter advances | | ~ | X | L | no change | | X | | L | no change | | _ | L | L | no change | | Н | \ \ | L | no change | | X | X | Н | O_0 to $O_3 = LOW$ | #### Notes 1. H = HIGH state (the more positive voltage) L = LOW state (the less positive voltage) X = state is immaterial ✓ = positive-going transition The second is a second in the secon HEF4520B <u>S</u>N Product specification Philips Semiconductors Product specification ## Dual binary counter HEF4520B MSI #### **AC CHARACTERISTICS** V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns | | V _{DD} | SYMBOL | MIN. | TYP. | MAX. | | TYPICAL EXTRAPOLATION FORMULA | |------------------------------------|-----------------|-------------------|------|------|------|-----|-------------------------------------| | Propagation delays | | | | | | | | | CP_0 , $\overline{CP}_1 o O_n$ | 5 | | | 110 | 220 | ns | 83 ns + (0,55 ns/pF) C _L | | HIGH to LOW | 10 | t _{PHL} | | 50 | 100 | ns | 39 ns + (0,23 ns/pF) C _L | | | 15 | | | 40 | 80 | ns | 32 ns + (0,16 ns/pF) C _L | | | 5 | | | 110 | 220 | ns | 83 ns + (0,55 ns/pF) C _L | | LOW to HIGH | 10 | t _{PLH} | | 50 | 100 | ns | 39 ns + (0,23 ns/pF) C _L | | | 15 | | | 40 | 80 | ns | 32 ns + (0,16 ns/pF) C _L | | $MR \rightarrow O_n$ | 5 | | | 75 | 150 | ns | 48 ns + (0,55 ns/pF) C _L | | HIGH to LOW | 10 | t _{PHL} | | 35 | 70 | ns | 24 ns + (0,23 ns/pF) C _L | | | 15 | | | 25 | 50 | ns | 17 ns + (0,16 ns/pF) C _L | | Output transition | | | | | | | | | times | 5 | | | 60 | 120 | ns | 10 ns + (1,0 ns/pF) C _L | | HIGH to LOW | 10 | t _{THL} | | 30 | 60 | ns | 9 ns + (0,42 ns/pF) C _L | | | 15 | | | 20 | 40 | ns | 6 ns + (0,28 ns/pF) C _L | | | 5 | | | 60 | 120 | ns | 10 ns + (1,0 ns/pF) C _L | | LOW to HIGH | 10 | t _{TLH} | | 30 | 60 | ns | 9 ns + (0,42 ns/pF) C _L | | | 15 | | | 20 | 40 | ns | 6 ns + (0,28 ns/pF) C _L | | Minimum CP ₀ | 5 | | 60 | 30 | | ns | | | pulse width; LOW | 10 | t _{WCPL} | 30 | 15 | | ns | | | | 15 | | 20 | 10 | | ns | | | Minimum \overline{CP}_1 | 5 | | 60 | 30 | | ns | | | pulse width; HIGH | 10 | t _{WCPH} | 30 | 15 | | ns | | | | 15 | | 20 | 10 | | ns | | | Minimum MR | 5 | | 30 | 15 | | ns | | | pulse width; HIGH | 10 | t _{WMRH} | 20 | 10 | | ns | | | | 15 | | 16 | 8 | | ns | see also waveforms | | Recovery time | 5 | | 50 | 25 | | ns | Figs 4 and 5 | | for MR | 10 | t _{RMR} | 30 | 15 | | ns | | | | 15 | | 20 | 10 | | ns | | | Set-up times | 5 | | 50 | 25 | | ns | | | $CP_0 \rightarrow \overline{CP}_1$ | 10 | t _{su} | 30 | 15 | | ns | | | | 15 | | 20 | 10 | | ns | | | | 5 | | 50 | 25 | | ns | | | $\overline{CP}_1 \rightarrow CP_0$ | 10 | t _{su} | 30 | 15 | | ns | | | | 15 | | 20 | 10 | | ns | | | Maximum clock | 5 | | 8 | 16 | | MHz | | | pulse frequency | 10 | f _{max} | 15 | 30 | | MHz | | | | 15 | | 20 | 40 | | MHz | | Philips Semiconductors Product specification ## **Dual binary counter** HEF4520B MSI #### **AC CHARACTERISTICS** V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns | | V _{DD} | TYPICAL FORMULA FOR P (μW) | | |-----------------|-----------------|---|---| | Dynamic power | 5 | 850 $f_i + \sum (f_o C_L) \times V_{DD}^2$ | where | | dissipation per | 10 | $3~800~f_i + \sum (f_o C_L) \times V_{DD}^2$ | f _i = input freq. (MHz) | | package (P) | 15 | 10 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$ | f _o = output freq. (MHz) | | | | | C _L = load capacitance (pF) | | | | | $\sum (f_0C_L) = \text{sum of outputs}$ | | | | | V _{DD} = supply voltage (V) | Philips Semiconductors Product specification ## Dual binary counter HEF4520B MSI HEF4520B NSI Philips Semiconductors