INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4520B MSI Dual binary counter

Product specification
File under Integrated Circuits, IC04

January 1995

Dual binary counter

HEF4520B MSI

DESCRIPTION

The HEF4520B is a dual 4-bit internally synchronous binary counter. The counter has an active HIGH clock input (CP $_0$) and an active LOW clock input ($\overline{\text{CP}}_1$), buffered outputs from all four bit positions (O $_0$ to O $_3$) and an active HIGH overriding asynchronous master reset input (MR). The counter advances on either the LOW to HIGH transition of the CP $_0$ input if $\overline{\text{CP}}_1$ is HIGH or the HIGH to

LOW transition of the \overline{CP}_1 input if CP_0 is low. Either CP_0 or \overline{CP}_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on MR resets the counter (O_0 to O_3 = LOW) independent of CP_0 , \overline{CP}_1 .

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

HEF4520BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4520BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4520BT(D): 16-lead SO; plastic (SOT109-1)

(SOT109-1)

(): Package Designator North America

PINNING

 CP_{0A} , CP_{0B} clock inputs (L to H triggered) \overline{CP}_{1A} , \overline{CP}_{1B} clock inputs (H to L triggered)

MR_A, MR_B master reset inputs

 O_{0A} to O_{3A} outputs O_{0B} to O_{3B} outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

ω

FUNCTION TABLE

CP ₀	CP ₁	MR	MODE
_	Н	L	counter advances
L	\ \	L	counter advances
~	X	L	no change
X		L	no change
_	L	L	no change
Н	\ \	L	no change
X	X	Н	O_0 to $O_3 = LOW$

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

✓ = positive-going transition

The second is a second in the secon

HEF4520B <u>S</u>N

Product specification

Philips Semiconductors Product specification

Dual binary counter

HEF4520B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
CP_0 , $\overline{CP}_1 o O_n$	5			110	220	ns	83 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5			110	220	ns	83 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
$MR \rightarrow O_n$	5			75	150	ns	48 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		35	70	ns	24 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
Output transition							
times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
Minimum CP ₀	5		60	30		ns	
pulse width; LOW	10	t _{WCPL}	30	15		ns	
	15		20	10		ns	
Minimum \overline{CP}_1	5		60	30		ns	
pulse width; HIGH	10	t _{WCPH}	30	15		ns	
	15		20	10		ns	
Minimum MR	5		30	15		ns	
pulse width; HIGH	10	t _{WMRH}	20	10		ns	
	15		16	8		ns	see also waveforms
Recovery time	5		50	25		ns	Figs 4 and 5
for MR	10	t _{RMR}	30	15		ns	
	15		20	10		ns	
Set-up times	5		50	25		ns	
$CP_0 \rightarrow \overline{CP}_1$	10	t _{su}	30	15		ns	
	15		20	10		ns	
	5		50	25		ns	
$\overline{CP}_1 \rightarrow CP_0$	10	t _{su}	30	15		ns	
	15		20	10		ns	
Maximum clock	5		8	16		MHz	
pulse frequency	10	f _{max}	15	30		MHz	
	15		20	40		MHz	

Philips Semiconductors Product specification

Dual binary counter

HEF4520B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	850 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	$3~800~f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	10 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

Dual binary counter

HEF4520B MSI

HEF4520B

NSI

Philips Semiconductors

